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Abstract. Linear unsteady water waves due to a pressure distribution in the forward motion over the free surface
of an inviscid, incompressible, heavy fluid are considered. The motion of pressure system is assumed to be rectilin-
ear and non-uniform starting from rest. The effect of a rapid acceleration is analysed asymptotically. A two-scale
expansion is developed for the velocity potential, and estimates for the remainder are established. Hydrodynamic
corollaries are derived from the asymptotics obtained. In particular, it is shown how the resistance, which is the
horizontal component of the fluid’s reaction to the system’s motion, depends on the bottom topography varying
in the direction of motion.
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1. Introduction: statement of the problem

Hovercraft travelling forward over calm water are supported by fans exerting a downward
pressure on the water surface (see e.g. [1]). Ignoring details of the air flow, a hovercraft may
be modelled by the forward motion of a prescribed pressure distribution (see [2–4] and ref-
erences cited therein). Then the waves generated in water are described within the framework
of the linearized theory by an initial-boundary-value problem (see [5, Introduction and Part
3]). Under some restrictions on the problem’s data, the uniqueness and existence theorems are
already established for solutions of some statements of the initial-boundary-value problem in
the following works: [6–8] (see also [5, Chapter 9]).

However, the results in [6–8] provide no details of the transient behaviour of the arising
water waves. Nevertheless, there are cases in which it is possible to extract information about
the propagation of waves in time. In particular, the asymptotic technique developed in [9,10]
(see also [11] and [5, Chapter 10]) allows us to do this for two classes of disturbances. High-
frequency disturbances constitute one of these classes which include, in particular, a high-fre-
quency pressure applied to the free surface of water at rest and the high-frequency oscillations
of the forward velocity of a submerged body.

The present paper is concerned with an example from the second class of disturbance –
the so-called brief disturbance – to which asymptotic analysis is applicable. Our aim is to
investigate the effect of the rapid accelerations of a pressure distribution on the resistance to
its rectilinear forward motion in the case when the distribution starts its non-uniform motion
over the horizontal free surface of water resting over a variable bottom topography and sub-
merged bodies. Using a two-scale expansion for a velocity potential yields an explicit for-
mula that expresses the time-dependence of the resistance during the interval of acceleration.
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Figure 1. A two-dimensional definition sketch of the geometry.

Furthermore, we show how during the same interval of time the resistance depends on the
bottom topography that is variable in the direction of motion.1

Let an inviscid, incompressible fluid of density ρ (e.g., water) occupy an infinite domain
W that is assumed to be contained in a horizontal layer of constant, possibly infinite, depth
d ∈ (0, +∞] (see Figure 1, where a two-dimensional sketch of the geometry is shown). Carte-
sian coordinates (x, y, z) are chosen so that F ={−∞<x, z<+∞, y= 0} coincides with the
mean free surface that bounds W from above, and the y-axis is directed vertically upwards.
Along with F , there may be two other parts of the boundary ∂W that are assumed to be
rigid: the unbounded sea-bed B and a bounded surface S, which is the union of the wetted
boundaries of all immersed bodies; B and S are supposed to be sufficiently smooth surfaces
placed at a certain finite distance from F , that is, a layer {−∞<x, z<+∞,−h< y < 0} of
constant depth h∈ (0, d) belongs to the water domain W . Hence, generally speaking, ∂W =
F ∪B ∪S, but either B or S may be empty.

Let the free-surface pressure distribution be given by a smooth function P(x, z) at the ini-
tial moment of time t = 0 (Of course, the assumption that P is smooth is often not satisfied
in practical applications, but we impose this assumption because it is essential for justifying
the asymptotic formulae derived in the paper). Let P have a compact support; that is P van-
ishes outside a bounded two-dimensional region having the diameter D, and P �=0 everywhere
inside it. In what follows, it is convenient to apply dimensionless variables using the same
notation for the variables and functions already introduced. We take D as the characteristic
length, (D/g)1/2 as the characteristic time interval, and ρDg as the characteristic pressure,
where g is the acceleration due to gravity. The characteristic scales for other functions are
generated by these three. We assume that the pressure distribution does not vary in time, and
water waves are generated by the non-uniform forward motion of the distribution. Choosing
the x-axis as the direction of the rectilinear motion, we have the following expression for the
surface pressure:

p(x, z; t)=P
(
x−

∫ t

0
V(µ)dµ, z

)
for t ≥0, (1)

where V(t)≥0 is the time-dependent forward velocity. The latter is supposed to be a contin-
uous function of t ≥ 0, vanishing at t = 0 and depending also on a small parameter ε in the
following way:

1A preliminary version of results presented here was completed almost 20 years ago and announced
in the note [12]. The author can only apologize to the readers and editor for the great delay in the
publication of the final version of this work.
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V(t)=v(t/ε)≥0, v(µ)→V = const>0 as µ→∞. (2)

Moreover, Q(µ)=V −v(µ) must decay at infinity so that

µmQ(µ)→0 as µ→∞ for any m=1,2, . . . (3)

The linearized theory of the irrotational unsteady water waves caused by the moving pres-
sure distribution is formulated (see e.g., [5]) in terms of a velocity potential φ(X; t, ε),X=
(x, y, z). It is natural to assume that φ belongs to the class of functions having finite kine-
tic and potential energy:

∫
W

|∇φ|2dxdydz+
∫
F

η2dxdz<∞. (4)

Here ∇ = (∂x, ∂y, ∂z) is the gradient operator and η denotes the free-surface elevation linked
to φ and p by the linearized kinematic condition on the free surface:

η(x, z; t)=−[∂tφ(x,0, z; t)+p(x, z; t)]. (5)

The continuity equation for the velocity field implies that φ satisfies Laplace’s equation

∇2φ=0 in W for t ≥0. (6)

There is no flow through any rigid surface and so

∂nφ=0 on B ∪S for t ≥0, (7)

where ∂n indicates differentiation with respect to a unit normal directed into W . The linear-
ized Bernoulli equation and (5) combine to give another free-surface condition:

∂2
t φ+ ∂yφ=−∂tp on F for t ≥0. (8)

Equation (6–8) are complemented by the following two initial conditions:

φ(x,0, z;0) = 0, (9)

∂tφ(x,0, z;0) = −P(x, z). (10)

The meaning of (10) follows from (5) and (1) and expresses the fact that the free surface is
horizontal at t=0. According to (9), (7), (6), and (4), we have that φ(X;0, ε) vanishes iden-
tically in W , which means that there is no initial motion in the water domain.

Our aim is construct an asymptotic expansion for φ valid as ε→0. In order to understand
what the assumption ε�1 means, one has to consider a velocity v(µ) that is equal to V iden-
tically for µ≥1, in which case the velocity varies only during the initial time interval that is
short in comparison with the characteristic time interval (D/g)1/2. Thus the pressure distribu-
tion accelerates rapidly during an initial interval of its motion and then moves forward uni-
formly. In the case when the general condition (3) holds, the velocity tends to V faster than
any power of t/ε.
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2. Formal asymptotic expansion

The forward velocity defined by (2) involves the so-called ‘rapid’ time τ = t/ε, and the right-
hand-side term in (8) with p given by (1) can be written in the form:

−pt =v(τ)∂xP(x−V t+ εα(τ), z), where α(τ)=
∫ τ

0
[V −v(µ)]dµ. (11)

Here the dependence on ε is expressed explicitly. In order to apply the technique of two-
scale asymptotic expansions for studying φ and deriving the hydrodynamic corollaries, let us
expand (11) into a sum of two series in powers of ε so that each series depends only on a
single time scale τ or t .

First we apply Taylor’s formula to (11) and obtain

∞∑
m=0

εm

m!
(v(τ )[α(τ)]m−V [α(∞)]m)∂m+1

x P(x−V t, z)+V
∞∑
m=0

εm

m!
[α(∞)]m∂m+1

x P(x−V t, z).

(12)

Here the original expansion is split into two sums in order to apply again Taylor’s formula to
∂m+1
x P(x−εVτ , z) in the first sum. After doing this and rearranging the order of summation,

we get

∞∑
m=0

εm∂m+1
x P(x, z)

m∑
k=0

(−V τ)m−k

k!(m−k)!
(
v(τ)[α(τ)]k−V [α(∞)]k

)
=

∞∑
m=0

εm

m!
βm(τ)∂

m+1
x P(x, z),

(13)

where

βm(τ)=v(τ)[α(τ)−V τ ]m−V [α(∞)−V τ ]m, m=0,1, . . . ,

arises when the binomial formula is applied in the second sum in the left-hand side. Combin-
ing (12) with (13), we arrive at the required expansion for (11) or, equivalently, for the right-
hand side term in (8):

−∂tp=
∞∑
m=0

εm

m!

{
βm(τ)∂

m+1
x P(x, z)+V [α(∞)]m∂m+1

x P(x−V t, z)
}
. (14)

Here the first term in braces depends only on τ , whereas the second depends only on t . It is
easy to check that

βm(0)=−[α(∞)]m and βm(τ)→0 as τ→∞.

Let us seeks the velocity potential as the two-time scaled asymptotic series

φ(X; t, ε)=
∞∑
m=0

εm[ϕm(X; τ)+ψm(X; t)], (15)

whose form is similar to the form of the series in the right-hand side of (14). Here ϕm(X; τ)
is assumed to tend to zero as τ→∞,m=0,1, . . . . These functions must also decay as |X|2 =
x2 +y2 + z2 →∞, so that condition (4) holds for them. The latter property must be true for
ψm(X; t) as well.
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Now we apply a standard asymptotic procedure in order to obtain boundary-value prob-
lems for ϕm and ψm. After substituting (15) and (14) in (6–10), we equate coefficients at each
power of ε. Moreover, coefficients depending on τ and t are equated separately. Thus we get
the following equations for ϕm holding for τ ≥0:

∇2ϕm=0 in W, and ∂nϕm=0 on B ∪S, m=0,1, . . . ; (16)

∂2
τ ϕm=0 on F, m=0,1; (17)

∂2
τ ϕm+ ∂yϕm−2 =βm−2(τ )∂

m−1
x P(x, z) on F, m=2,3, . . . . (18)

For ψm,m=0,1, . . . , we arrive at the following equations valid for t ≥0:

∇2ψm=0 in W, and ∂nψm=0 on B ∪S, (19)

∂2
t ψm+ ∂yψm=V [α(∞)]m∂m+1

x P(x−V t, z) on F. (20)

In addition, the following initial relations must hold:

ψm(x,0, z;0)=−ϕm(x,0, z;0), m=0,1, . . . ; (21)

∂tψ0(x,0, z;0)=−[∂τϕ1(x,0, z;0)+P(x, z)]; (22)

∂tψm(x,0, z;0)=−∂τϕm+1(x,0, z;0), m=1,2, . . . . (23)

Integrating (17) under the condition that ϕm decays for large τ , we get

ϕm(x,0, z; τ)=0 for τ ≥0 and m=0,1.

Thus, (16) and (4) imply that ϕ0(X; τ) and ϕ1(X; τ) vanish identically for 0 ≤ τ <+∞ and
X∈W(W =W ∪ ∂W is the closure of W ). Hence (18) reduces to

∂2
τ ϕm=βm−2(τ )∂

m−1
x P(x, z) on F for m=2,3.

From here we obtain that

ϕm(x,0, z; τ)= ∂m−1
x P(x, z)

∫ ∞

τ

(µ− τ)βm−2(µ)dµ for m=2,3, (24)

because ϕm decays as τ → ∞. Solving the boundary-value problem (16) and (24), which
depends on the parameter τ , in the class defined by (4), one determines ϕ2(X; τ) and ϕ3(X; τ)
uniquely for X∈W and 0≤ τ <+∞. Continuing the iterative procedure, we arrive at the fol-
lowing result:

ϕm(X; τ)=
[m/2]∑
k=1

umk(X)
1

(2k−1)!(m−2k)!

∫ ∞

τ

(µ− τ)2k−1βm−2k(µ)dµ for m=2,3, . . . .

(25)

Here [s] denotes the integer part of s∈ (−∞,+∞), and umk must be determined from the fol-
lowing boundary-value problem:

∇2umk =0 in W, ∂uumk =0 on B ∪S, (26)

umk =
{
∂m−1
x P(x, z) for k=1.

−∂yum−2,k−1 for k=2,3, . . . on F,
(27)
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which is uniquely solvable under condition (4). It can be verified by direct calculation that
the recurrent condition (18) holds for the functions defined by (25) with umk satisfying (27).
Equations (26) follow from (16).

Now the right-hand-side terms in the initial condition (21–23) are found. This allows us to
solve the sequence of initial-boundary-value problems (19–23) that defines ψm for m=0,1, . . . .

Let us summarise the results of the present section. We developed the following algorithm
for finding terms in the asymptotic expansion (15). Solutions to the recurrent sequence of time-
independent boundary-value problems (26), (27) must be found first, and then (25) determines
ϕm,m=2,3, . . . , whereas ϕ0 and ϕ1 vanish identically. When all ϕm are defined, they provide the
initial data for the sequence of the initial-boundary-value problems (19–23), m=0,1, . . . . Solving
the latter problems one finds ψm, thus completing the construction of the asymptotic expansion
(15).

To conclude this section, we note that, if the water is of constant depth, no submerged
bodies are present, then it is possible to integrate explicitly the sequence of problems for ϕm
and ψm. This can be performed in the same way as in [5, Section 10.1.3].

3. Justification of the asymptotics

To justify the asymptotic formula (15) we have to derive an estimate of the following remain-
der term

rN(X; t, ε)=φ(X; t, ε)−
N∑
m=0

εm[ϕm(X; τ)+ψm(X; t)].

Since ϕ2 is the first non-trivial function in the sequences {ϕm}∞
m=0 obtained in Section 2, we

assume that N ≥ 2. Substituting rN and (11) in problem (6–10) and using (16–23), one can
verify directly that rN must satisfy the following initial-boundary-value problem:

∇2rN =0 in W, ∂nrN =0, on B ∪S for t ≥0, (28)

∂2
t rN + ∂yrN =fN(x, z; t, ε) on F for t ≥0, (29)

rN(x,0, z;0, ε)= ∂t rN (x,0, z;0, ε)=0. (30)

where

fN(x, z; t, ε)=v(τ)∂xP(x−V t+ εα(τ), z)−

−
N−2∑
m=0

εm

m!

[
βm(τ)∂

m+1
x P(x, z)+ [α(∞)]m∂m+1

x P(x−V t, z)
]
−

−
N∑

m=N−1

εm

m!

[
∂yϕm+ [α(∞)]m∂m+1

x P(x−V t, z)
]
. (31)

By re-expanding the right-hand side here in the same way as was done for (11), it can be
shown that (31) takes the form:
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fN(x, z; t, ε)= εN−1

(N −1)!

(
v(τ)[α(τ)]N−1

∫ 1

0
∂Nx P(x+ εα(τ)µ, z)(1−µ)N−1dµ +

+
[
VβN−1(τ )+v(σ )[α(σ)]N−1|σ=∞

σ=τ
]∫ 1

0
∂Nx P(x−V tµ, z)(1−µ)N−1dµ−

−
[
∂yϕN−1(x,0, z; τ)+ [α(∞)]N−1∂Nx P(x−V t, z)

])
−

−ε
N

N !

[
∂yϕN(x,0, z; τ)+ [α(∞)]N∂N+1

x P(x−V t, z)
]
. (32)

It is shown in [7] (see also [5, Chapter 9]) that the trace on F of a solution to problem
(28–30) can be expressed as follows:

rN(x,0, z; t, ε)=
∫ t

0
K−1/2 sin

(
(t−µ)K1/2

)
fN(x, z;µ, ε)dµ. (33)

Here K is the so-called Dirichlet-Neumann operator that maps ϕ(x, z) belonging to the Sobo-
lev space H�(F ),−∞< � <+∞, into (Kϕ)(x, z)= uy(x,0, z), where u solves the following
boundary-value problem

∇2u=0 in W, ∂nu=0 on B ∪S, u=ϕ on F,

It is well-known that K satisfies the following estimate:

‖Kϕ‖�−1 ≤C�‖ϕ‖�. (34)

For estimating rN , it is necessary to split (33) into a sum defined by the right-hand side of
(32) and then estimate each of the six terms in the same way as in [5, Chapter 10]. (The cru-
cial point is to use (34).) Omitting the details of this estimation procedure, we formulate the
final result:

Let P ∈HN+2(F ), then the following estimate

‖rN‖1/2 ≤C(N)εN+1t‖P‖N+2

holds, thus justifying the asymptotic formula (15). Here ‖ · ‖� denotes the norm in H�(F ).

4. Hydrodynamic corollaries uniform in time

The aim of the present section and of the next one is to derive asymptotic formulae for the
wave resistance. In the present section we deal with formulae which are true for any finite sub-
intervals of t ≥0. Other formulae valid for t=O(ε) are considered in Section 5.

Since the elevation of free surface η is involved in the calculation of the resistance (that
is, the horizontal component of the reaction of water to the forward motion of the pressure
distribution), we begin with developing the asymptotics for η. According to results obtained
in Section 2, the principal terms in the asymptotics of φ(X; t, ε) and ∂tφ(X; t, ε) are ψ0(X; t)
and ∂tψ0(X; t), respectively. Applying the procedure used for obtaining (14), we get that the
principal term in the asymptotics of p(x, z; t, ε) is equal to P(x −V t, z). Substituting these
asymptotics in (5), we get

η(x, z; t, ε)=−[∂tψ0(x,0, z; t)+P(x−V t, z)]+O(ε), (35)

which shows that, if the pressure system either instantly starts the forward motion at the
limit speed V or approaches the same speed during a time interval O(ε), then on any finite
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subinterval of t≥0 the free-surface elevation is the same up to a term O(ε). The asymptotic
formula for η including the first-order term has the form:

η(x, z; t, ε)=− [∂tψ0(x,0, z; t)+P(x−V t, z)]−
−ε [∂tψ1(x,0, z; t)+α(∞)∂xP(x−V t, z)]+O(ε2), (36)

because the contributions depending on the rapid time τ cancel. This is natural in view of
the assumption that the acceleration time scale ε is short in comparison with the gravitational
time scale (D/g)1/2 and the fact that gravity is the force generating water waves (see Section
5, where the gravitational character of waves is explained in more detail for the initial time
interval O(ε)).

Let us turn to the resistance R(t, ε), which is the horizontal component of the reaction of
water to the forward motion of the pressure distribution and is equal to the integrated hydro-
dynamic pressure force (see e.g., [13, p. 459] for a general formula)

R(t, ε)=
∫
y=η(x,z;t)

pnxdσ,

where nx is the x-component of the unit normal n to y = η(x, z; t); here and below, n is
directed into water and dσ denotes the element of surface area. Since p given by (1) van-
ishes at infinity, one can integrate over the whole surface y=η(x, z; t). Changing variables and
substituting (1), we get

R(t, ε)=
∫
F

P
(
x−

∫ t

0
v(µ/ε)dµ, z

)
∂xη(x, z; t, ε)dxdz,

where now we indicate the dependence of R on ε as well. Integrating by parts, we obtain

R(t, ε)=−
∫
F

η(x, z; t, ε)∂xP
(
x−

∫ t

0
v(µ/ε)dµ, z

)
dxdz, (37)

which is a more convenient formula when η is known. Moreover, using (5) we obtain another
representation that involves only the velocity potential:

R(t, ε)=
∫
F

∂tφ(x,0, z; t, ε)∂xP
(
x−

∫ t

0
v(µ/ε)dµ, z

)
dxdz. (38)

Here we have taken into account that the second term

P
(
x−

∫ t

0
v(µ/ε)dµ, z

)
∂xP

(
x−

∫ t

0
v(µ/ε)dµ, z

)

integrates to zero over F because P vanishes at infinity.
Using the principal terms in the asymptotics of both factors in the right-hand side of (38),

we get

R(t, ε)=
∫
F

∂tψ0(x,0, z; t)∂xP(x−V t, z)dxdz+O(ε), (39)

and, like formula (35), this asymptotics holds on any finite time interval. Again, the princi-
pal term in (39) corresponds to the pressure distribution instantly starting its motion at the
speed V .
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Using the terms of the zero and first order, we obtain from (38)

R(t, ε)=
∫
F

∂tψ0(X0; t)∂xP(x−V t, z)dxdz+

+ ε
∫
F

[
α(∞)∂tψ0(X0; t)∂2

xP(x−V t, z)+ ∂tψ1(X0; t)∂xP(x−V t, z)
]

dxdz−

− ε[α(∞)−α(τ)]
∫
F

∂tψ0(X0; t)∂xP(x, z)dxdz+O(ε2),

where X0 = (x,0, z). Since the τ -dependent factor [α(∞) − α(τ)] decays rapidly, we apply
formula

∂tψ0(X0; t)=−P(x, z)+O(ε), (40)

that follows from (22). This gives

−ε[α(∞)−α(τ)]
∫
F

∂tψ0(X0; t)∂xP(x, z)dxdz

= ε[α(∞)−α(τ)]
∫
F

P(x, z)∂xP(x, z)dxdz+O(ε2)=O(ε2),

because the integral vanishes since P vanishes at infinity. Therefore, we get

R(t, ε)=
∫
F

∂tψ0(X0; t)∂xP(x−V t, z)dxdz+

+ε
∫
F

[
α(∞)∂tψ0(X0; t)∂2

xP(x−V t, z)+ ∂tψ1(X0; t)∂xP(x−V t, z)
]

dxdz+O(ε2).

Comparing this with (36), we see that the asymptotic formulae for both η and R do not
depend on the rapid time τ up to O(ε2). Furthermore, one can show that the first coefficient
depending on τ in the asymptotics of R is the coefficient in O(ε3).

5. Hydrodynamic corollaries for t=O(ε)

Let us analyse formula (35) for t =O(ε). For this purpose we apply (40), which is a conse-
quence of the initial condition (22), and the analogue of (40) for P(x − V t). Thus we find
that

η(x, z; t, ε)=O(ε) for t=O(ε).

Hence, more terms must be considered for obtaining the first non-trivial term in the asympt-
otics of η for t=O(ε). Therefore, we truncate (15) and the series for p by dropping the terms
with m>2. Substituting the truncated expansion in (5), we get

η(x, z; t, ε)=−
2∑

m=0

εm
{
∂τϕm+1(x,0, z; τ)+ ∂tψm(x,0, z; τ) +

+ 1
m!

[
([α(τ)−V τ ]m− [α(∞)−V τ ]m)∂mx P(x, z) +

+ [α(∞)]m∂mx P(x−V t, z)]}+O(ε3). (41)

Here we have taken into account that ϕ0 vanishes identically. More simplifications are possi-
ble when t =O(ε). We begin by dropping ϕ1 ≡ 0 and re-expanding functions depending on t
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in Taylor series. Then, using (18), (20), (22–25), and (27), we obtain after simple, but rather
lengthy algebra that cancels the coefficient at ε, that the following applies:

η(x, z; t, ε)=−ε
2τ 2

2
∂y∂tψ0(x,0, z;0)+O(ε3) for t=O(ε). (42)

Since τ = t/ε, the principal term in the asymptotics of the free-surface elevation is proportional
to t2/2 when t=O(ε). Presumably, the gravitational origin of water waves causes the similar-
ity between the principal term in (42) and the dependence on time of the distance of a body
falling down under the action of gravity.

To clarify the dependence of η on P during the initial time interval, let us rewrite (42).
Putting U0(X)=−∂tψ0(X;0), we see that, by (19) and (22), this function satisfies the follow-
ing boundary-value problem:

∇2U0 =0 in W, ∂nU0 =0 on B ∪S, U0 =P(x, z) on F. (43)

(We recall that this boundary-value problem has the unique solution in the class defined by
(4).) Now (42) takes the form:

η(x, z; t, ε)= t2

2
∂yU0(x,0, z)+O(ε3) for t=O(ε). (44)

Since P is smooth and vanishes at infinity, it attains its maximum and minimum on the
support of P. To be specific, let this function have its maximum at (x∗, z∗). Then U0 also
has its maximum at (x∗,0, z∗). This follows from (43), the maximum principle for harmonic
functions, and the maximum principle of Hopf (see, e.g., [14, Chapter 2, Section 3]). Indeed,
by the first principle U0 has its maximum on ∂W. Since the second principle implies that
the outward normal derivative is positive at the point where the maximum is reached, this
point cannot belong to B ∪ S. Hence (x∗,0, z∗) is the maximum point of U0 because of the
Dirichlet condition that holds on F . Moreover, by the maximum principle of Hopf, we have
that ∂yU0(x∗,0, z∗)> 0. The case of the minimum of P can be considered in the same way.
Hence we arrive at the following conclusion:

The asymptotic formula (44) implies that during the time interval t =O(ε) the free-surface
elevation is positive (negative) at the point where the pressure distribution attains its maximum
(minimum).

Let us turn to the physical meaning of this result. It says that the point on the horizontal
free surface, subjected to the maximum pressure at the initial moment, moves upwards after
being released from the action of the maximum pressure because of its forward motion.

When analysing below the resistance of a pressure distribution moving over the horizontal
bottom, we need the two-term asymptotic formula for η in addition to (44). The same pro-
cedure as above, but starting from (41) with four terms, gives

η(x, z; t, ε)= t2

2
∂yU0(x,0, z)+ ε3χ(τ)

2
∂yU1(x,0, z)+O(ε4) for t=O(ε), (45)

where

χ(τ)=
∫ τ

0
[Vµ2 − (V −v(µ))(τ −µ)2] dµ, τ = t/ε, (46)

and U1(X)=u21(X) satisfies the following boundary-value problem (see (26) and (27)):

∇2U1 =0 in W, ∂nU1 =0 on B ∪S, U1 = ∂xP(x, z) on F, (47)

which is uniquely solvable in the class defined by (4).
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It is obvious that χ(0)=0 and, differentiating (46), we have

χ ′(τ )=V τ 2 −2
∫ τ

0
(τ −µ)(V −v(µ))dµ=2

∫ τ

0
(τ −µ)v(µ)dµ≥0, (48)

because v≥0. Thus χ(τ)≥0 and, being an increasing function, χ(τ) becomes strictly positive
for τ >0 as soon as v(τ) does.

In order to obtain the leading term in the asymptotics of R(t, ε) valid for t =O(ε), we
substitute (44) in (37) and expand the x-derivative of the pressure in the same way as in Sec-
tion 2. Then we arrive at

R(t, ε)=− t
2

2

∫
F

∂yU0(x,0, z)∂xP(x, z)dxdz+O(ε3) for t=O(ε). (49)

The explicit dependence on t is a significant advantage of this formula as compared with (39).
Indeed, similarly to (44) the principal term in (49) is proportional to t2, whereas for reveal-
ing the dependence on t in (39) one has to solve the initial-boundary-value problem for ψ0

and take into account the forward motion of the pressure distribution with velocity V . After
transforming (49), we will derive more corollaries concerning the behaviour of R(t, ε) for t=
O(ε).

We note that ∂xP(x, z) = ∂xU0(x,0, z) by the last condition in (43). This and the fact
that U0 satisfies the homogeneous Neumann condition on B ∪S (see (43)) allow us to apply
Green’s identity to the integral in (49). The result is as follows:

R(t, ε)=− t
2

2

∫
W

∇U0 ·∇∂xU0dxdydz+O(ε3).

Since ∇U0 · ∇∂xU0 = 2−1∂x |∇U0|2, the divergence theorem gives the final asymptotic formula
for the resistance:

R(t, ε)= t2

4

∫
B∪S

|∇U0|2nxdσ +O(ε3) for t=O(ε). (50)

Here we integrate only over B ∪ S because nx vanishes identically on F . Note that the sec-
ond x-derivative of P was used in the formula (41), which is the starting point for deriving
formula (50), and so the latter formula cannot be obtained without some smoothness assump-
tion.

Comparing (49) with (50), we see that the advantage of (49) follows from the fact that one
has to integrate over a bounded subregion of F , because P has compact support. If B is flat
outside a bounded region, that is, B coincides at infinity with

{−∞<x, z<+∞, y=−d}, d= const>0, (51)

then nx has compact support on B, and one also integrates in (50) over a bounded region.
(Note that one cannot avoid integration over the unbounded domain W in the equivalent for-
mula involving W .)

Let us turn to hydrodynamic corollaries of (50). Since the first factor in the integrand is
positive, the sign of R(t, ε) depends on the sign of nx. First, let us mention two cases when
the leading term in (50) does vanish:
1. There are no submerged bodies and the bottom is flat; that is, S=∅ and B is given by

(51). Of course, various techniques can be applied in this case; for example, an explicit
solution can be obtained in the form of integral transforms which allows us to analyse
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this solution by means of asymptotic methods developed for integrals (mainly for inte-
grals with a large parameter; see, e.g., [15] and references cited therein). However, below
we use for this particular geometry the same asymptotic method as for the general geom-
etry.

2. Surfaces S and B are symmetric about the (y, z)-plane, in which case cos(n, x) is an odd
function of x. The pressure distribution is either symmetric or antisymmetric about the
same vertical plane; that is, P(−x, z)=±P(x, z), which implies that |∇U0(x, y, z)|2 is an
even function of x. Hence the integrand in (50) is odd in x, and so the integral vanishes.

Now let us assume that S=∅ and B is a cylindrical surface having its generators parallel to
the z-axis; that is, the bottom is defined as follows:

B={−∞<x, z<+∞, y=−H(x)}, where H(x)>0. (52)

Therefore, if H is monotonic, then nx is of fixed sign on B; that is, nx ≥0 (nx ≤0) when −H
decreases (increases). Hence when the pressure distribution accelerates down (up) the bottom
slope, the principal term in the asymptotic formula (50) for the resistance is positive (negative).

Let us discuss what the latter assertion means in terms of the reaction force acting on the
pressure system during its motion. It is natural that R<0 when the system accelerates up the
bottom slope, which means that this force acts in the direction opposite to the x-axis along
which the pressure system moves. However, it is an unexpected result that, when the pressure
system accelerates down the bottom slope, the force acts in the direction of motion because
the leading term of the resistance is positive.

Let us consider the first case mentioned above in more detail. Since the corresponding con-
ditions imply that the leading term in (50) vanishes, we substitute (45) in (37) and keep two
terms in the expansion of ∂xP(x − ε

∫ τ
0 v(µ)dµ, z) in (37). Then we arrive at the following

asymptotics:

R(t, ε)= ε3

2

∫
F

[(
τ 2
∫ τ

0
v(µ)dµ

)
∂2
xP(x, z)∂yU0 −χ(τ)∂xP(x, z)∂yU1

]
dxdz+O(ε4),

for t=O(ε). (53)

Here the τ -dependent functions are nonnegative by (2) and (48), and they become positive as
soon as v(τ) does. Let us split the integral over F in (53) into a sum of two integrals and
transform them in order to show that the leading term is negative. Using (47) and Green’s
identity (this is possible because condition (4) implies that there is no contribution of the inte-
gral over a vertical circular cylinder whose radius tends to infinity), we have for the second
integral:∫

F

∂xP(x, z)∂yU1dxdz=
[∫

F

−
∫
B

]
U1∂yU1dxdz=

∫
W

|∇U1|2dxdydz, (54)

where we also take into account that S=∅. According to the third condition in (47) and the
second condition in (43), the first integral over F in (53) can be transformed as follows:∫

F

∂2
xP(x, z)∂yU0dxdz=

∫
F

∂xU1∂yU0dxdz=
[∫

F

−
∫
B

]
∂xU1∂yU0dxdz.

Now applying Green’s formula to the harmonic functions U0 and ∂xU1 we get that the last
difference of two integrals is equal to[∫

F

−
∫
B

]
U0∂x∂yU1dxdz.
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Integrating by parts here (again (4) allows us to do this), and using the second condition in
(47) and the third condition in (43) differentiated with respect to x, we rewrite the last differ-
ence as

−
[∫

F

−
∫
B

]
∂xU0∂yU1dxdz=−

∫
F

∂xP(x, z)∂yU1dxdz.

Repeating once more the same manipulations, but now the last two conditions in (47) must
be used, and applying once more Green’s formula for U1, we get

−
∫
F

∂xP(x, z)∂yU1dxdz=−
[∫

F

−
∫
B

]
U1∂yU1dxdz=−

∫
W

|∇U1|2dxdydz.

Thus we have obtained that∫
F

∂2
xP(x, z)∂yU0dxdz=−

∫
W

|∇U1|2dxdydz, (55)

where in the right-hand side we have the same integral as in (54). Substituting (54) and (55)
in (53), we arrive at

R(t, ε)=−ε
3

2

[
χ(τ)+ τ 2

∫ τ

0
v(µ)dµ

]∫
W

|∇U1|2dxdydz+O(ε4) for t=O(ε). (56)

We recall that here S = ∅, B is given by (51), τ = t/ε, and χ(τ) is given (46). Taking into
account that the τ -dependent coefficient in the square brackets is non-negative (it becomes
strictly positive as soon as v(τ) does), we see that the leading term in (56) is non-positive
(strictly negative as soon as v(τ)>0).

From (50) and (56), we see that the behaviour of the resistance during a brief acceleration
interval of a pressure distributions moving over the free surface allows us to ‘recognise’ the bot-
tom topography if it is given by (52). According to (56), the water layer of constant depth resists
to the acceleration, and R=O(ε3). On the other hand, (50) demonstrates that R=O(ε2) if
the bottom is inclined to the horizontal, and the leading term is of definite sign that depends on
the character of the bottom slope. The water layer resists the acceleration of the pressure distri-
bution ‘uphill’, whereas in the case of the ‘downhill’ motion the water layer shows the opposite
reaction.

6. Conclusion

Waves caused by a rapid acceleration of a pressure distribution over the free surface of water
have been considered. In the case when the rate of acceleration is characterised by a small
parameter ε, a two-scale asymptotic expansion has been derived for the corresponding veloc-
ity potential. The remainder term obtained by truncation of the expansion was estimated
in appropriate function spaces. Some hydrodynamic corollaries have been deduced from the
asymptotics of the velocity potential. These corollaries include two types of asymptotic for-
mulae for the resistance R(t, ε), which is the reaction of water to the forward motion of the
pressure system. The relative roles of these formulae are as follows:
• The formulae that belong to the first type (see the last two paragraphs of Section 4, in

particular, formula (39)) involve functions ψ0 and ψ1, which are solutions of some initial-
boundary-value problems. Therefore, these formulae are rather difficult for evaluation, but
their advantage over the formulae of the second type (see (50) and (56) in Section 5) is
that they are valid on any finite time interval, whereas the formulae of the second type
express R(t, ε) only during the initial time interval t=O(ε).
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• The qualitative meaning of formula (39) is that, up to O(ε), the resistance R(t, ε) is
the same as the resistance of the same pressure distribution instantly starting its forward
motion at the limit value of speed.

• The main advantage of the formulae of the second type is the explicit dependence on t of
the leading term in the asymptotic of R(t, ε), but, as was mentioned above, this is achieved
at the expense of the short time range of these formulae.

• Another advantage of formulae (50) and (56) is the form of dependence on the geom-
etry of the water domain W . This dependence involves function U0 and U1 which are
solutions of the time-independent boundary-value problems. This allows us to study the
qualitative behaviour of R(t, ε) for some particular geometries of W . It was found that,
during the rapid acceleration of the surface pressure and depending upon the geometry of
W , the resistance can act in the direction opposite to the direction of motion as well as
in the same direction. Earlier, a similar effect was discovered in [11]. This study was con-
cerned with the problem of the wave-making resistance for a submerged body, moving for-
ward so that its velocity oscillates with high frequency about a mean value. This problem
was studied using another asymptotic technique.
Finally, let us turn to the question how small must be ε in the asymptotic procedure pre-

sented in this paper. In [5, Section 10.1] a similar asymptotic technique was applied to the
problem of impulsive surface pressure and an example constructed for comparing the exact
solution with its asymptotic approximation. The numerical computations illustrating the lat-
ter example show that even ε= 3/2 may be considered to be small enough for the principal
term of the asymptotic to provide a good approximation to the exact solution.
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